Sparse Fisher's linear discriminant analysis for partially labeled data
نویسندگان
چکیده
منابع مشابه
Sparse Linear Discriminant Analysis by Thresholding for High Dimensional Data
In many social, economical, biological, and medical studies, one objective is to classify a subject into one of several classes based on a set of variables observed from the subject. Because the probability distribution of the variables is usually unknown, the rule of classification is constructed using a training sample. The well-known linear discriminant analysis (LDA) works well for the situ...
متن کاملSparse Uncorrelated Linear Discriminant Analysis
In this paper, we develop a novel approach for sparse uncorrelated linear discriminant analysis (ULDA). Our proposal is based on characterization of all solutions of the generalized ULDA. We incorporate sparsity into the ULDA transformation by seeking the solution with minimum `1-norm from all minimum dimension solutions of the generalized ULDA. The problem is then formulated as a `1-minimizati...
متن کاملUnderstanding and Evaluating Sparse Linear Discriminant Analysis
Linear discriminant analysis (LDA) represents a simple yet powerful technique for partitioning a p-dimensional feature vector into one of K classes based on a linear projection learned from N labeled observations. However, it is well-established that in the high-dimensional setting (p > N ) the underlying projection estimator degenerates. Moreover, any linear discriminate function involving a l...
متن کاملCommunication-efficient Distributed Sparse Linear Discriminant Analysis
We propose a communication-e cient distributed estimation method for sparse linear discriminant analysis (LDA) in the high dimensional regime. Our method distributes the data of size N into m machines, and estimates a local sparse LDA estimator on each machine using the data subset of size N/m. After the distributed estimation, our method aggregates the debiased local estimators from m machines...
متن کاملFisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework
Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Analysis and Data Mining: The ASA Data Science Journal
سال: 2017
ISSN: 1932-1864,1932-1872
DOI: 10.1002/sam.11367